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Abstract

The Minimum Evolution (ME) approach to phylogeny estimation has been shown

to be statistically consistent when it is used in conjunction with ordinary least-squares

(OLS) �tting of a metric to a tree structure. The traditional approach to using ME

has been to start with the Neighbor Joining (NJ) topology for a given matrix, and

then do a topological search from that starting point. The �rst stage requires O(n3)

time, where n is the number of taxa, while the current implementations of the second

are in O(pn3) or more, where p is the number of swaps performed by the program. In

this paper, we examine a greedy approach to Minimum Evolution which produces a

starting topology in O(n2) time. Moreover, we provide an algorithm that searches for

the best topology using nearest neighbor interchanges (NNIs), where the cost of doing

p NNIs is O(n2 + pn), i.e. O(n2) in practice because p is always much smaller than

n. The Greedy Minimum Evolution (GME) algorithm, when used in combination with

NNIs, produces trees which are fairly close to NJ trees in terms of topological accuracy.

We also examine ME under a balanced weighting scheme, where sibling subtrees have

equal weight, as opposed to the standard \unweighted" OLS, where all taxa have

the same weight so that the weight of a subtree is equal to the number of its taxa.

The balanced minimum evolution scheme (BME) runs slower than the OLS version,

requiring O(n2 � diam(T )) operations to build the starting tree and O(pn � diam(T ))

to perform the NNIs, where diam(T ) is the topological diameter of the output tree. In

the usual Yule-Harding distribution on phylogenetic trees, the diameter expectation is

in log(n), so our algorithms are in practice faster that NJ. Moreover, this BME scheme

yields a very signi�cant improvement over NJ and other distance-based algorithms,

especially with large trees, in terms of topological accuracy.
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Introduction

Minimum evolution was proposed by several authors (Kidd and Sgaramella-Zonta 1971;

Saitou and Nei 1987; Rzhetsky and Nei 1993; Swo�ord, Olsen, Waddell, and Hillis 1996)

as a basic principle for phylogenetic inference. Given the matrix of pairwise evolutionary

distances between the taxa being studied, this principle involves �rst estimating the length of

any given topology and then selecting the topology with shortest length. Minimum evolution

is thus conceptually close to character-based parsimony, and complies with Occam's principle

of scienti�c inference, which essentially maintains that simpler explanations are preferable

to more complicated ones and that ad hoc explanations should be avoided.

Numerous variants of the minimum evolution principle exist, depending on how the

branch lengths are estimated and how the tree length is calculated from these branch lengths.

Several de�nitions of tree length have been proposed, di�ering from one another by the treat-

ment of negative branch lengths. The most common solution (Saitou and Nei 1987; Rzhetsky

and Nei 1993) simply de�nes the tree length as the sum of all branch lengths, regardless of

whether they are positive or negative. Branch lengths are usually estimated within the

least-squares framework. If all distance estimates can be assumed to be independent and to

have the same variance, we use the ordinary least-squares (OLS) framework. The weighted

least-squares framework corresponds to the case were distance estimates are independent

but (possibly) with di�erent variances, while the generalized least-squares approach does

not impose any restriction and is able to take bene�t from the covariances of the distance

estimates. It is well-known that distance estimates obtained from sequences do not have

the same variance, because the largest distances are much more variable than the shortest
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ones (Fitch and Margoliash 1967), and are mutually dependent when they share a com-

mon history (or path) in the true phylogeny (Nei and Jin 1989). Therefore, to estimate

branch lengths from evolutionary distances, using generalized least-squares is theoretically

superior to using weighted least-squares, which is in turn more appropriate than ordinary

least-squares (Bulmer 1991).

The minimum evolution principle has been shown to be statistically consistent when

combined with ordinary least-squares (Rzhetsky and Nei 1993; Denis and Gascuel 2002).

This important property implies that the more accurate the distance estimates, as induced

by the use of long sequences when a correct sequence evolution model is chosen, the higher the

probability of recovering the true phylogeny. However, ordinary least-squares poorly �ts the

features of evolutionary distance data, as explained above. Thus, it is tempting to combine

the minimum-evolution principle with a more reliable estimation of branch lengths, using

weighted least-squares or generalized least-squares. However, we recently demonstrated that

such a combination is not always statistically consistent and, therefore, could represent a

dead end towards obtaining better phylogenetic inference methods, especially in the case of

generalized least-squares (Gascuel, Denis and Bryant 2001).

This paper further investigates the minimum evolution principle, but with a more op-

timistic perspective. First, we demonstrate that its usage in combination with ordinary

least-squares, even when not fully optimal in terms of topological accuracy, has the great

advantage of leading to very fast algorithms, much faster than the NJ algorithm (Saitou and

Nei 1987), fast enough as to be able to build very large trees as envisaged in biodiversity

studies. Second, we show that a new version of this principle, �rst introduced by Pauplin
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(2000) to simplify tree length computation, is more appropriate than the OLS version. In

this new version, sibling subtrees have equal weight, as opposed to the standard unweighted

OLS, where all taxa have the same weight and thus the weight of a subtree is equal to the

number of its taxa. This new version can be seen as weighted, just as WPGMA is the

weighted version of UPGMA (Sneath and Sokal 1973), but we will prefer the term \bal-

anced" to avoid confusion with weighted least-squares. In addition to the aforementioned

fast OLS minimum evolution algorithms, we also present algorithms to deal with this new

balanced version that are also faster than NJ, though not as fast as their OLS counter-

parts. Furthermore, the balanced algorithms produced output trees with better topological

accuracy than those from NJ, BIONJ (Gascuel 1997a) and WEIGHBOR (Bruno, Socci and

Halpern 2000). The rest of this paper is organized as follows: we �rst provide the notation

and de�nitions, we describe the algorithms for the OLS version of the minimum evolution

principle, we explain how these algorithms are modi�ed to deal with the balanced version, we

provide simulation results to illustrate the gain in topological accuracy and run times, and

we then conclude by a brief discussion. The appendix provides the details of the algorithms

and some mathematical proofs.

5



1 Notation, de�nitions, and formulae

A tree is made of nodes (or vertices) and of edges (or branches). Among the nodes we

distinguish the internal (or ancestral) nodes and the leaves (or taxa). The leaves are denoted

as i; j or k, the internal nodes as u; v or w, while an edge e is de�ned by a pair of nodes and

a length l(e). We shall be considering various length assignments of the same underlying

shape. In this case, we shall use the word \topology", while \tree" will be reserved for an

instance of a topology with given edge lengths associated. We use the letter T to refer to

a topology and T to refer to a tree. A tree is also made of subtrees (or clades), typically

denoted as A;B;C or D. For the sake of simplicity, we shall use the same notation for the

subtrees and for the sets of taxa they contain. Accordingly, T also represents the set of taxa

being studied, and n is the number of these taxa. Moreover, we shall use lowercase letters,

e.g. a; b; c or d, to represent the subtree roots. If A and B are two disjoint subtrees, with

roots a and b respectively, we'll say that A and B are distant-k subtrees if there are k edges

in the path from a to b.

� is the matrix of pairwise evolutionary distance estimates, with �ij being the distance

between taxa i and j. Let A and B be two non-intersecting subtrees from a tree T . We

de�ne the average distance between A and B as:

�AjB =
1

jAjjBj
X

i2A;j2B

�ij (1)

�AjB may also be de�ned recursively as:

� If A and B are singleton sets, i.e. A = fag and B = fbg, then �AjB = �ab,
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� Else, without loss of generality let B = B1 [ B2 as shown in Figure 1, we then have

�AjB =
jB1j
jBj �AjB1

+
jB2j
jBj �AjB2

(2)

It is easily seen that Equations (1) and (2) are equivalent. Equation (2) follows the notion

that the weight of a subtree is proportional to the number of its taxa. So every taxon has

the same weight, and the same holds for the distances as shown by Equation (1). Thus,

this average is said to be unweighted (Sneath and Sokal 1973). It must be noted that the

unweighted average distance between subtrees does not depend on their topologies, but only

of the taxa they contain.

�T is the distance induced by the tree T , i.e., �T
ij is equal to the length of the path

connecting i to j in T , for every taxon pair (i; j) . Given a topology T and a distance matrix

�, the OLS branch length estimation produces the tree T with topology T minimizing the

sum of squares:
X
i;j2T

(�T
ij ��ij)

2:

Vach (1989), Rzhetsky and Nei (1993) and others showed analytical formulae for the proper

OLS edge length estimation, as functions of the average distances. Suppose e is an internal

edge of T , with the four subtrees A, B, C and D de�ned as depicted in Figure 2(a). Then,

the OLS length estimate of e is equal to:

l(e) =
1

2
(�(�AjC +�BjD) + (1� �)(�AjD +�BjC)� (�AjB +�CjD)); (3)
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where

� =
jAjjDj+ jBjjCj

(jAj+ jBj)(jCj+ jDj) :

Suppose e is an external branch, with i, A and B as represented in Figure 2(b). Then we

have:

l(e) =
1

2
(�Aji +�Bji ��AjB): (4)

Equations (3) and (4) demonstrate an important property of OLS edge length estimation:

the length estimate of any given edge does not depend of the topology of the \corner"

subtrees, i.e., A;B;C and D in Equation (3) and A and B in Equation (4), but only of the

taxa contained in these subtrees.

Following Saitou and Nei (1987) and Rzhetsky and Nei (1993), we de�ne the tree length

l(T ) of T to be the sum of the edge lengths of T . The OLS minimum evolution tree is then

that tree with topology T minimizing l(T ), where T has the OLS edge length estimates for

T , and T ranges over all possible tree topologies for the taxa being studied.

Now, suppose that we are interested in the length of the tree T shown in Figure 2(a),

depending on the con�guration of the corner subtrees. We then have (proof in Appendix 1):

l(T ) =
1

2
(�(�AjC +�BjD) + (1� �)(�AjD +�BjC) + �AjB +�CjD) (5)

+l(A) + l(B) + l(C) + l(D)��ajA ��bjB ��cjC ��djD

where � is de�ned as in Equation (3). The advantage of Equation (5) is that the lengths

l(A); l(B); l(C) and l(D) of the corner subtrees as well as the average root/leaf distances,

�ajA;�bjB;�cjC and �djD , do not depend of the con�guration of A;B;C and D around
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e. Exchanging B and C or B and D might change the length of the �ve edges shown in

Figure 2(a), and then the length of T , but not the lengths of A, B, C and D. This simply

comes from the fact that the edge e is within the corner subtrees associated to any of the

edges of A;B;C and D. As we shall see in the next section, this property is of great help in

designing fast OLS tree swapping algorithms.

Let us now turn our attention toward the balanced version of minimum evolution, as

de�ned by Pauplin (2000). The tree length de�nition is the same. Formulae for edge length

estimates are identical to Equations (3) and (4), with � replaced by 1=2 and using a di�erent

de�nition of the average distance between subtrees, which depends on the topology under

consideration. Letting T be this topology, the balanced average distance between two non-

intersecting subtrees A and B is then recursively de�ned by:

� If A and B are singleton sets, i.e. A = fag and B = fbg , then �T
AjB = �ab;

� Else, without loss of generality let B = B1 [ B2 as shown in Figure 1, we then have

�T
AjB =

1

2
(�T

AjB1
+�T

AjB2
): (6)

The change from Equation (2) is that the sibling subtrees B1 and B2 have now equal weight,

regardless of the number of taxa they contain. Thus taxa do not have the same in
uence

depending on whether they belong to a large clade or are isolated, which can be seen as

consistent in the phylogenetic inference context (Sneath and Sokal 1973). Moreover, com-

paring variants of the NJ algorithm we showed by computer simulation (Gascuel 2000) that

this \weighted" approach is more appropriate than the unweighted one for reconstructing
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phylogenies with evolutionary distances estimated from sequences. Therefore, it was tempt-

ing to test the performance of this weighted (or balanced) version of the minimum evolution

principle.

Unfortunately, this new version does not have all of the good properties as the OLS

version: the edge length estimates given by Equations (3) and (4) now depend on the topology

of the corner subtrees, simply because the weighted average distances between these subtrees

depend on their topologies. As we shall see, this makes the algorithms more complicated

and more expensive in computing time than with OLS. However, the same tree length

formula, Equation (5), holds with � being replaced by �T and � by 1=2, and, fortunately,

we still have the good property that tree lengths l(A); l(B); l(C) and l(D) as well as average

root/leaves distances �T
ajA;�

T
bjB;�

T
cjC and �T

djD remain unchanged when B and C or B and

D are swapped. Edge lengths within the corner subtrees may change when performing a

swap, but their (balanced) sums remain identical (proof in Appendix 2).
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2 Algorithms for the OLS version of Minimum Evolution

This section presents two algorithms for phylogenetic inference. The �rst constructs an

initial tree by the stepwise addition of taxa to a growing tree, while the second improves this

tree by performing local rearrangements (or swapping) of subtrees. Both follow a greedy

approach and tend, at each step, to minimize the OLS version of the minimum evolution

criterion. This approach does not guarantee that the global optimum will be reached, but

only a local optimum. However, this kind of approach has proven to be e�ective in many

optimization problems (Cormen, Leiserson and Rivest 2000, 329-356), and we shall see that

further optimizing the minimum evolution criterion would not yield signi�cant improvement

in terms of topological accuracy. Moreover, such a combination of heuristic and optimization

algorithms is used in numerous phylogenetic reconstruction methods, for example those from

the PHYLIP package (Felsenstein 1989).

2.1 The GME greedy addition algorithm

Given an ordering on the taxa, denoted as (1; 2; 3; : : : ; n) , for k = 4 to n we create

a tree Tk on the taxa set (1; 2; 3; : : : ; k). We do this by testing each edge of Tk�1 as a

possible insertion point for k, and the di�erent insertion points are compared by the minimum

evolution criterion. Inserting k on any edge of Tk�1 removes that edge, changes the length

of every other already existing edge, and requires the computation of the length of the

three newly created edges. Computing the new tree length for every possible insertion point

would seem to be computationally expensive. However, a much simpler approach exists to

determine the best insertion point.

Consider the tree T of Figure 3, where k is inserted between subtrees C and A [B, and
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assume that we have the length l(T ) = L of this new tree. Consider now the tree T 0 of

Figure 3, which is obtained from T by exchanging k and A. Using Equation (5) and our

above remarks we have

l(T 0) = L+
1

2

h
(�� �0)(�kjA +�BjC) + (�0 � 1)(�AjB +�kjC) + (1� �)(�AjC +�kjB)

i
(7)

where

� =
jAj+ jBjjCj

(jAj+ jBj)(jCj+ 1)
;

and

�0 =
jAj+ jBjjCj

(jAj+ jCj)(jBj+ 1)
:

In other words, the length of T 0 can be computed from the length of T . For this computation

to be done in O(1) (i.e. constant) time, it is su�cient to have previously computed

1. all average distances �kjS between k and any subtree S from Tk�1;

2. all average distances between subtrees of Tk�1 separated by two edges, for example A

and B in Figure 3;

3. the number of leaves of every subtree.

Suppose we now consider the tree T 00 formed by moving the insertion of k to the edge e,

where e is a sibling edge to the insertion point of T 0. The length of T 00 is computed by

Equation (7) as l(T 00) = L+ f(e), where f(e) depends on the computations for both T 0 and

T 00. We continue, searching every edge e of Tk�1 by recursively moving from one edge to its

neighboring edges, and we obtain the cost c(e) that corresponds to the length of the tree
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Tk�1 plus k inserted on e. Moreover, c(e) can be written as L+ f(e). Because we only seek

to determine the best insertion point, we need not calculate the actual value of L, as it is

su�cient to minimize f(e) with f = 0 for the �rst insertion edge considered.

The algorithm can be summarized as follows:

� For k = 3, initialize the matrix of average distances between distant-2 subtrees and

the array counting the number of taxa per subtree. Form T3 with leaf set f1; 2; 3g.

� For k = 4 to n,

1. Compute all �kjS average distances;

2. Starting from an initial edge e0 of Tk�1, set f(e0) = 0, and recursively search each

edge e to obtain f(e) from Equation (7).

3. Select the best edge by minimizing f , insert k on that edge to form Tk, and

update the average distance between every pair of distant-2 subtrees as well as

the number of taxa per subtree.

� Return Tn.

To achieve Step 1, we recursively apply Equation (2), which requires O(k) computing

time (see Appendix 3). Step 2 is also done in O(k) time, as explained above. Finally, to

update the average distance between any pair A;B of distant-2 subtrees, if k is inserted in

the subtree A,

�fkg[AjB =
1

1 + jAj�kjB +
jAj

1 + jAj�AjB: (8)
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Step 3 is also done in O(k) time, because there are O(k) pairs of distant-2 subtrees, and all

the quantities in the right-hand side of Equation (8) have already been computed. So we

build Tk from Tk�1 in O(k) computational time, and thus the entire computational cost of the

construction of T , as we sum over k, is O(n2) . This is much faster than NJ-like algorithms

which require O(n3) operations, and the FITCH (Felsenstein 1997) program which requires

O(n4) operations. As we shall see, this allows trees with 4,000 taxa to be constructed in

few minutes, while this task requires more than an hour for NJ, and is essentially impossible

for FITCH on any existing and imaginable machine. This algorithm is called GME (Greedy

Minimum Evolution algorithm) and additional details are described in Appendix 3.

2.2 The FASTNNI tree swapping algorithm

This algorithm iteratively exchanges subtrees of an initial tree, in order to minimize its

OLS length estimate. There are many possible de�nitions of \subtree exchange". Since the

number of combinations is high, we usually only consider exchanging neighboring subtrees,

and, at least initially, we restrict ourselves to the exchange of subtrees separated by three

edges, for example B and C in Figure 2(a). Such a procedure is called a \nearest neighbor

interchange", since exchanging subtrees separated by one or two edges does not yield any

modi�cation of the initial tree. We adopted this approach because it allows a fast algorithm,

and it is su�cient to reach a good topological accuracy.

Consider Figure 2(a), and assume that the swap between B and C is considered. Let T

be the initial tree and T 0 the swapped tree. According to Equation (5) and our remarks, we
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have:

L(T )� L(T 0) =
1

2

h
(�� 1)(�AjC +�BjD)� (�0 � 1)(�AjB +�CjD)

�(�� �0)(�AjD +�BjC)
i
; (9)

where � is as de�ned in Section 1, and

�0 =
jAjjDj+ jBjjCj

(jAj+ jCj)(jBj+ jDj) :

The swap has to be performed when L(T ) � L(T 0) > 0 , and the best among all possible

swaps (2 per internal edge) corresponds to the largest di�erence between L(T ) and L(T 0).

Moreover, assuming that the average distances between the corner subtrees have already

been computed, L(T ) � L(T 0) can be obtained in O(1) time via Equation (9). Instead of

computing the average distances between the corner subtrees (which change when swaps are

realized), we compute the average distances between every pair of non-intersecting subtrees.

This takes place before evaluating the swaps and requires O(n2) time, using an algorithm

that is described in Appendix 4. The whole algorithm can be summarized as follows:

1. Precompute the average distances between non-intersecting subtrees;

2. Run over all internal edges and select the best swap using Equation (9);

3. If the best swap does not improve the length of the tree; i.e. if (L(T ) � L(T 0) � 0),

stop and return the current tree, else perform the swap, compute the average distances

between the newly created subtrees (A[C and B [D in our example above) and the
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other non-intersecting subtrees using Equation (2), and go to Step 2.

Step 1 requires O(n2) time, Step 2 requires O(n) time and Step 3 also requires O(n) time

because the total number of subtrees is O(n). Thus, the total complexity of the algorithm is

O(n2 + pn), where p is the number of swaps performed. In practice, p is much smaller than

n, as we shall see in Section 4, so this algorithm has a practical time complexity of O(n2). It

is very fast, able to improve trees with thousands of taxa, and we called it FASTNNI (Fast

Nearest Neighbor Interchanges). More details are given in Appendix 4.

Rzhetsky and Nei (1993) describe a procedure that requires O(n2) to compute every

branch length. In one NNI, �ve branch lengths are changed, so evaluating a single swap is in

O(n2), searching for the best swap in O(n3), and their whole procedure in O(pn3). This can

be improved using Bryant and Waddell (1998) results, but the implementation in the PAUP

environment of these ideas is still in progress (David Bryant, personnal communication). In

any case, our O(n2) complexity is optimal since it is identical to the data size.

Neither FASTNNI nor GME needs to explicitly compute the length of the whole tree until

the �nal topology is reached. To obtain the length of the �nal tree, we use Equations (3)

and (4), which requires O(n) time as the average distances between corner subtrees have

already been computed during the execution of FASTNNI.
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3 Algorithms for the balanced version of minimum evolution

The balanced averaging scheme lends itself both for an insertion-based approach and for

tree swapping from an initial topology, and the algorithms are essentially the same as with

OLS. The main di�erence is that updating can no longer be achieved using a fast method

as expressed by Equation (8), because the balanced average distance between A [ fkg and

B now depends of the position of k within A.

3.1 The BME addition algorithm

This algorithm is similar to that for OLS. Equation (7) simpli�es into:

L(T 0) = L+
1

4

h
(�T

AjC +�T
kjB)� (�T

AjB +�T
kjC)

i
: (10)

Step 1 is identical and provides all �T
kjS distances by recursively applying Equation (6).

The main di�erence is the updating performed in Step 3. Equation (10) only requires

the balanced average distances between distant-2 subtrees, but to iteratively update these

distances, we use (and update) a data structure that contains all distances between every

pair of non-intersecting subtrees (as for FASTNNI).

How many new averages must be calculated, when k is inserted into Tk�1? We must

calculate the average �Tk
XjY [fkg for any subtree Y of Tk�1 such that Y [ fkg is a subtree of

Tk, and any subtree X disjoint from Y [fkg. We can enumerate all such pairs by considering

their respective roots. Let x be the root of X and y the root of Y . Regardless of the position

of k, any node of Tk could serve as the root x of X. Then, considering a �xed x, any node in

the path from x to k could serve as the root y. Thus there are O(k � diam(Tk)) such pairs,
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where diam is the tree diameter, i.e. the maximum number of edges between two leaves.

Given such a pair, X; Y , let us consider how we may quickly calculate �Tk
XjY [k from known

quantities. Consider the situation as depicted in Figure 4. Suppose k is inserted by creating

a new node w which pushes the subtree Y1 farther away from B. Suppose there are (l � 1)

edges in the path from w to y, and the subtrees branching o� this path are, in order from w

to y, Y2; Y3; : : : ; Yl. Then

�Tk
XjY [fkg = 2�l(�Tk

kjX +�
Tk�1

XjY1
) +

lX
i=2

2�(l+1�i)�
Tk�1

XjYi
:

However, we already know the value of

�
Tk�1

XjY = 2�(l�1)�
Tk�1

XjY1
+

lX
i=2

2�(l+1�i)�
Tk�1

XjYi
:

Thus

�Tk
XjY [fkg = �

Tk�1

XjY + 2�l(�Tk
kjX ��

Tk�1

XjY1
): (11)

The upper bound on the number of pairs is worst when Tk is a chain, with k inserted at

one end. In this case, the diameter is proportional to k and both the number of distances

to update and the bound are proportional to k2. However, the diameter is usually much

lower. Assuming, as usual, a Yule-Harding speciation process (Yule 1925; Harding 1971),

the expected diameter is O(log(k)) (Erd�os, Steel, Sz�ek�ely and Warnow 1999), which implies

an average complexity of the updating step in O(k log(k)). Other (e.g. uniform) distributions

on phylogenetic trees are discussed in (Aldous 2001; McKenzie and Steel 2000), with expected

diameter at most O(
p
k).
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Therefore, the time complexity of the whole insertion algorithm is O(n3) in the worst

case, and O(n2 log(n)) (or O(n2
p
n)) in practice. This is still much less than NJ and allows

trees with thousands of taxa to be constructed within a reasonable amount of time. To wit:

the BME program required less than 20 seconds on average to build 1000-taxon trees, and

approximately 12 minutes on average to build 4000-taxon trees. In contrast, NJ required

twice as much time for 1000-taxon trees, and �ve times as much time for 4000-taxon trees.

This algorithm is called BME (Balanced Minimum Evolution) and additional details are

given in Appendix 5.

3.2 The BNNI tree swapping algorithm

This algorithm is again very similar to that for OLS. Equation (9) simpli�es into: .

L(T )� L(T 0) =
1

4
((�T

AjB +�T
CjD)� (�T

AjC +�T
BjD)): (12)

Step 1 is identical, but Equation (2) is replaced by Equation (6). Of course, the prelimi-

nary step of the tree swapping algorithm is unnecessary when the initial tree is constructed

using the BME algorithm, because this latter computes (among other things) the average bal-

anced distances between every pair of non- intersecting subtrees. Finally, the main di�erence

is within Step 3, where average distances between subtrees are updated. The computations

are almost identical to those of Section 3.1 and require O(n log(n)) computations on average.

Thus, the total time complexity is O(n2 + pn log(n)) where p is the number of performed

swaps, or O(pn log(n)) if Step 1 is unnecessary. As with the OLS algorithms, this allows

very large trees to be improved. This algorithm is called BNNI (Balanced Nearest Neighbor
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Interchanges), and details are given in Appendix 5.

Finally, as with the OLS algorithms, neither BME nor BNNI explicitely computes the

branch lengths. This is done in O(n) time by using the edge length formulae from Appendix 2

l(e) = �T
A[BjC[D �

1

2
(�T

AjB +�T
CjD)

and

l(e) =
1

2
(�T

ijA +�T
ijB ��T

AjB);

for the external and internal branches, respectively (see Figure 2 for the notation).

20



4 Results

4.1 Protocol

We used simulations based on random trees with parameter values chosen so as to be

representative of the data sets commonly encountered in evolutionary studies. Parameter

values were chosen so as to cover the features of most real data sets, as revealed by the

compilation of the phylogenies published in the journal Systematic Biology during the last

few years. This approach induces much smaller contrasts between the tested methods than

those based on model trees (e.g., Gascuel 1997a; Bruno, Socci and Halpern. 2000). Indeed,

model trees are generally used to emphasize a given property of the studied methods, for

example their performance when the molecular clock is strongly violated. Thus, model trees

are often extreme and their use tends to produce strong and possibly misleading di�erences

between the tested methods. On the other hand, random trees allow comparisons with a

large variety of tree shapes and evolutionary rates, and provide a synthetic and more realistic

view of the average performances.

We used 24- and 96-taxon trees, and 2000 trees per size. For each of these trees, a

true phylogeny, denoted as T , was �rst generated using the stochastic speciation process

described by Kuhner and Felsenstein (1994), which corresponds to the usual Yule-Harding

distribution on trees (Yule 1925; Harding 1971). Using this generating process makes T

ultrametric (or molecular clock-like). This hypothesis does not hold in most biological data

sets, so we created a deviation from the molecular clock, using a method similar to that of

(Guindon and Gascuel 2002). Every branch length of T was multiplied by 1:0 + �X, where

X followed the standard exponential distribution (P (X > �) = e��) and � was a tuning
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factor to adjust the deviation from molecular clock; � was set to 0.8 with 24 taxa and to 0.6

with 96 taxa. The average ratio between the mutation rate in the fastest evolving lineage

and the rate in the slowest evolving lineage was then equal to about 2.0 with both tree sizes.

With 24 taxa, the smallest value (among 2000) of this ratio was equal to about 1.2 and the

largest to 5.0 (1.0 corresponds to the strict molecular clock), while the standard deviation

was approximately 0.5. With 96 taxa, the extreme values became 1.3 and 3.5, while the

standard deviation was 0.33.

These (2 � 2000) trees were then rescaled to obtain \slow", \moderate" and \fast"

evoutionary rates. With 24 taxa, the branch length expectation was set to 0.03, 0.06 and 0.15

mutations per site, for the slow, moderate and fast conditions, respectively. With 96 taxa,

we had 0.02, 0.04 and 0.10 mutations per site, respectively. For both tree sizes, the average

maximum pairwise divergence was of about 0.2, 0.4 and 1.0 substitutions per site, with a

standard deviation of about 0.07, 0.14 and 0.35 for 24 taxa, and of about 0.04, 0.08 and 0.20

for 96 taxa. These values are in good accordance with real data sets. The maximum pairwise

divergence is rarely above 1.0 due to the fact that multiple alignement from highly divergent

sequences is simply impossible. Moreover, with such distance value, any correction formula,

e.g. Kimura's (1980), becomes very doubtful, due to our ignorance of the real substitution

process and to the fact that the larger the distance the higher the gap between estimates

obtained from di�erent formulae. The medium condition (�0.4) corresponds to the most

favorable practical setting, while in the slow condition (from �0.1 to �0.3) the phylogenetic
signal is only slightly perturbed by multiple substitutions, but it can be too low, with some

short branches being not supported by any substitution.

22



SeqGen (Rambaut and Grassly 1997) was used to generate the sequences. For each tree

T (among 3 � 2 � 2000), these sequences were obtained by simulating an evolving process

along T according to the Kimura (1980) two parameter model with a transition/transversion

ratio of 2.0. The sequence length was set to 500 sites. Finally, DNADIST from the PHYLIP

package (Felsenstein 1989) was used to compute the pairwise distance matrices, assuming

the Kimura model with known transition/transversion ratio. The data �les are available on

our web page (see title page).

Every inferred tree, denoted as bT , was compared to the true phylogeny T (i.e., that

used to generate the sequences and then the distance matrix) with a topological distance

equivalent to Robinson and Foulds' (1981). This distance is de�ned by the proportion of

internal branches (or bipartitions) which are found in one tree and not in the other one.

This distance varies between 0.0 (both topologies are identical) and 1.0 (they do not share

any internal branch). The results were averaged over the 2000 test sets for each tree size and

evolutionary rate. Finally, to compare the various methods to NJ, we measured the relative

error reductions (PM � PNJ)=PNJ , where M is any tested method di�erent from NJ and PX

is the average topological distance between bT and T when using method X.

4.2 Phylogeny Estimation Algorithm Comparison

We used a variety of di�erent algorithms to try to reconstruct the original tree, given the

matrix of estimated distances. We used the NJ program from the PAUP package (Swo�ord

1996), with and without the BIONJ (Gascuel 1997a) 
ag; WEIGHBOR version 1.2, available

at http://www.t10.lanl.gov/billb/weighbor/; the FITCH program from the PHYLIP

package (Felsenstein 1989); the Harmonic Greedy Triplet (HGT/FP) program, provided by
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Miklos Cs}ur�os (Cs}ur�os 2002); GME and BME. Also, we used output topologies from other

programs as input for FASTNNI and BNNI. All of GME, BME, FASTNNI, and BNNI will

be available in the near future at our web page and via ftp at

ftp://ncbi.nlm.nih.gov/�desper/ME.
We also measured how far from the true phylogeny one gets with NNIs. This served

as a measure of the limitation of each of the minimum evolution frameworks, as well as a

performance index for evaluating our algorithms. Ordinarily, the (OLS or balanced) mini-

mum evolution criterion will not, in fact, observe a minimum value at the true phylogeny.

So, starting from the true phylogeny and running FASTNNI or BNNI, we end up with a

tree with a signi�cant proportion of false branches. When this proportion is high, the corre-

sponding criterion can be seen as poor regarding topological accuracy. Thus this proportion

represents the best possible topological accuracy that can be achieved by optimizing the con-

sidered criterion, since we would not expect any algorithm optimizing this criterion in the

whole tree space to �nd a tree closer from the true phylogeny than the tree that is obtained

by \optimizing" the true phylogeny itself.

Results are displayed in Table 1 and Table 2.

(Table 1 here)

The performances of the basic algorithms are strongly correlated with the number of

computations that they perform. Both O(n2) algorithms are clearly worse than NJ. BME (in

O(n2 log(n))) is still worse than NJ, but becomes very close with 96 taxa, which indicates the

strength of the balanced minimum evolution framework. BIONJ, inO(n3) like NJ and having

identical computing times, is slightly better than NJ in all conditions, while WEIGHBOR,
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also in O(n3) but requiring complex numerical calculations, is better than BIONJ. Finally,

FITCH, which is in O(n4), is the best with 24 taxa, but was simply impossible to evaluate

with 96 taxa (see the computing times below).

(Table 2 here)

After FASTNNI, we observe that the output topology does not depend much on the input

topology. Even the deeply 
awed HGT becomes close to NJ, which indicates the strength of

NNIs. However, except for the true phylogeny in some cases, this output is worse than NJ.

This con�rms our previous results (Gascuel 2000) , which indicated that the OLS version

of minimum evolution is reasonable but not excellent for phylogenetic inference. But this

phenomenon is much more visible with 24 than with 96 taxa, so we expect the very fast

GME+FASTNNI O(n2) combination to be equivalent to NJ with large n.

After BNNI, all initial topologies become better than NJ. With 24 taxa, the performance

is equivalent to that of FITCH, while with 96 taxa the results are far better than those

of WEIGHBOR, especially in the Fast condition where BNNI improves NJ by 21%, against

10% for WEIGHBOR. These results are somewhat unexpected, since BNNI has a low O(n2+

pn log(n)) average time complexity. Moreover, as explained above, we do not expect very high

contrast between any inference method and NJ, due to the fact that our data sets represent

a large variety of realistic trees and conditions, but do not contain extreme trees, notably

concerning the maximum pairwise divergence. First experiments indicate that maximum

parsimony is close to BNNI in the Slow and Moderate conditions, but worse in the Fast

condition, the contrast between these methods being in the same range as those reported

in Table 1 and 2. The combination of BNNI with BME or GME can thus be seen as
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remarkably e�cient and accurate. Moreover, regarding the true phylogeny after BNNI, it

appears that little gain could be expected by further optimizing this criterion, since our

simple optimization approach is already close to these upper values.

4.3 Computing Times

To compare the actual running speeds of these algorithms, we tested them on a Sun

Enterprise E4500/E5500, with ten 400 MHz processors and 7 GB of memory, running

the Solaris 8 operating system. Table 3 summarizes the average computational times (in

hours:minutes:seconds) required by the various programs to build phylogenetic trees. The

leftmost two columns were averaged over two thousand 24- and 96-taxon trees, the third

over ten 1000-taxon trees, and the �nal column over four 4000-taxon trees. Stars indicate

entries where the algorithm was deemed to be too slow to bother with that test.

(Table 3 here)

FITCH would take approximately 25 minutes to make a 96-taxon tree, which makes it

impractical for real applications, because they often include bootstrapping which requires

the construction of a large number of trees. As WEIGHBOR's running time increased more

than 60-fold when moving from 24-taxon trees to 96-taxon trees, we judged it infeasible to

run WEIGHBOR on even one 1000-taxon tree. The same reasoning held for BIONJ when

we reached the 4000-taxon level.

The PAUP version of NJ started quite slowly, but was tolerably fast up through the 1000-

taxon level. A closer examination of how PAUP operates leads us to believe that the program

takes an inordinately long amount of time to load the data matrices, which yield a time cost

function along the lines of c1n
2 + c2n

3, where c1 was relatively large. In contrast, BIONJ is
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twice as fast as PAUP NJ for 24-taxon trees, but this advantage disappears quickly. This

result is due to the di�erent implementations of the two algorithms: BIONJ only requires an

additional O(n2) calculations beyond those used by NJ, so the implementation re�nements

in PAUP's NJ could be used to speed up BIONJ considerably.

The fastest programs in Table 3 were the ME, ME + FASTNNI, and HGT/FP algorithms.

The HGT/FP algorithm was the only one which was able to maintain the fast speed of the

ME + FASTNNI combination, but it did so at a serious cost in terms of topological accuracy.

The BME and BME + BNNI combinations lagged behind their OLS-based counterparts, but

were still signi�cantly faster than NJ and BIONJ. Of particular interest is the GME + BNNI

combination, which was not only markedly faster than NJ at the 96-, 1000-, and 4000-taxon

levels, but also produced superior topologies. Table 3 con�rms that all of our algorithms are

faster than NJ, with the improvement becoming notably impressive when thousands of taxa

are dealt with. Furthemore, we suspect that implementation re�nements such as those used

in PAUP's NJ could be used to make our algorithms still much faster.

Table 4 contains the number of NNIs performed by each of the three combinations which

appear in Table 3. Not surprisingly, the largest number of NNIs was consistently required

when the intial topology was made to minimize the OLS ME criterion, but NNIs were chosen

to minimize the balanced ME criterion (i.e., GME + BNNI). This table shows the overall

superiority of the BME tree over the GME tree, when combined with BNNI. In all of the

cases considered, the average number of NNIs considered for each value of n was considerably

less than n itself.

(Table 4 here)
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5 Discussion

We have presented a new greedy implemention of minimum evolution tree topology

searching that is considerably faster than most distance algorithms currently in use. The

current most popular fast algorithm is Neighbor-Joining, an O(n3) algorithm. Our greedy

ordinary least-squares minimum evolution tree construction algorithm (GME) runs at O(n2),

the size of the input matrix. Although the GME tree is not quite as accurate as the NJ tree,

it is a good starting point for nearest neighbor interchanges (NNIs). The combination of

GME and FASTNNI, which achieves NNIs according to the ordinary least-squares criterion,

also in O(n2) time, has a topological accuracy very close to that of NJ, especially with large

numbers of taxa.

However, the balanced minimum evolution framework appears much more appropriate for

phylogenetic inference than the ordinary least-squares version. This is likely due to the fact

that it gives less weight to the topologically long distances, i.e. those containing numerous

edges, while the ordinary least-squares method puts the same con�dence on each distance,

regardless of its length. Even when the usual and topological lengths are di�erent, they

are strongly correlated. The balanced minimum evolution framework is thus conceptually

closer to weighted least-squares (Fitch and Margoliash, 1967), which is more appropriate

than ordinary least-squares for evolutionary distances estimated from sequences. Studying

the formal relationship between weighted least-squares and balanced minimum evolution, as

well as the consistency of this latter approach, are important directions for further research.

The balanced NNI algorithm (BNNI) allows reaching outstanding performance, superior

to those of NJ, BIONJ and WEIGHBOR. BNNI is an O(n2+np diam(T )) algorithm, where
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diam(T ) is the diameter of the inferred tree, and p the number of swaps performed. With

p diam(T ) = O(n) for most data sets, the combination of GME and BNNI e�ectively gives

us an O(n2) algorithm with high topological accuracy.
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Appendix

1 Derivation of Tree Length Formula

In this section, we'll derive Equation (5), which we use throughout our NNI analysis.

First, we need the following lemma: (Vach 1989; Gascuel 1997b)

Lemma 1.1 If T is the OLS tree for its topology for the matrix �, and u is a node in

T which separates the three subtrees X; Y; and Z, we then have �XjY = �T
XjY . (And by

symmetry this identity also holds for XjZ, and Y jZ.)

Now, let's reconsider Equation (5) and Figure 2(a),

l(T ) =
1

2
(�(�AjC +�BjD) + (1� �)(�AjD +�BjC) + �AjB +�CjD)

+l(A) + l(B) + l(C) + l(D)��ajA ��bjB ��cjC ��djD;

where

� =
jBjjCj+ jAjjDj

(jAj+ jBj)(jCj+ jDj) :

It is clear that

l(T ) = l(A) + l(B) + l(C) + l(D) + (13)

l(v; a) + l(v; b) + l(w; c) + l(w; d) + l(v; w)
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and from Lemma 1.1,

�AjB = �T
AjB = �ajA + l(v; a) + l(v; b) + �bjB;

and similarly

�CjD = �T
CjD = �cjC + l(w; c) + l(w; d) + �djD:

Thus,

l(v; a) + l(v; b) + l(w; c) + l(w; d) = �AjB +�CjD � (�ajA +�bjB +�cjC +�djD): (14)

We substitute the right-hand side of Equation (14) and the OLS value for l(v; w) from

Equation (3) into Equation (13) to achieve the desired Equation (5).
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2 Constant Subtree Lengths under Tree Swapping in the Balanced

Scheme

First, we consider Equation (3) for internal edge length estimation when using balanced

weights. Since � = 1=2, the equation simpli�es to:

lT (e) =
1

2
(
1

2
(�T

AjC +�T
BjD +�T

AjD +�T
BjC)� (�T

AjB +�T
CjD))

= �T
A[BjC[D �

1

2
(�T

AjB +�T
CjD) (15)

The balanced edge length formula for external edges is essentially the same: Equation (4)

simpli�es to

lT (e) = �T
ijA[B �

1

2
�T
AjB: (16)

Now let's consider a topology T with three subtrees A;B; and C, which meet at the

vertex v. Let a; b; and c be the roots of these three subtrees, with b1 and b2 the children of

b and c1, c2 the children of c, determining leaf subsets B1; B2; C1 and C2, respectively. By

Equation (15),

l(v; b) = �T
A[CjB �

1

2
� (�T

B1jB2
+�T

AjC)

=
1

2
� (�T

AjB +�T
BjC ��T

B1jB2
��T

AjC):

Similarly,

l(v; c) =
1

2
� (�T

AjC +�T
BjC ��T

C1jC2
��T

AjB);
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and thus

l(v; b) + l(v; c) = �T
BjC �

1

2
� (�T

B1jB2
+�T

C1jC2
): (17)

In particular, the right-hand side of Equation (17) is completely independent of the internal

structure of A. Thus if we perform a tree swap internal to A, the sum l(v; b) + l(v; c) will

remain constant. Analagous arguments will show the same result if either b or c is a leaf.

This indicates that neither the length of a subtree (here B [ C) nor its average root/leaves

distance (here, from v to any leaves of B [ C) is changed when a swap is performed within

a disjoint subtree (here, A).
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3 Details of GME Algorithm

In this section, we provide the details of the Greedy ME algorithm. Recall that we

iteratively form the tree Tk with leaf set [k] = f1; : : : ; kg from Tk�1 by selecting an insertion

point. Step 1 of the insertion process is to calculate �kjS for every subtree S of Tk�1. We'll

use the following notation:

� We root Tk�1 at any taxon r, and let d be its unique direct descendant.

� Let DFS-POST (Tarjan 1983, 14{19) be the depth-�rst post-order of the vertices of

Tk�1.

� Let DFS-PRE (Tarjan 1983, 14{19) be the depth-�rst pre-order of the vertices of Tk�1.

� For any non-leaf node v (or w), let v1 and v2 (or w1 and w2, respectively) denote its

two children.

� For any node v of Tk�1, if v is a leaf, let L(v) = fvg, otherwise let L(v) be the set of all
nodes of Tk�1 which are descendants of v, including v itself. Let U(v) the complement

to L(v) among the nodes of Tk�1.

The details of Step 1 are:

1. To calculate �kjS for all S which are subtrees of Tk�1:

(a) Loop for w from DFS-POST - frg. IF w 2 [k � 1], �kjL(w) = �kw, ELSE

�kjL(w) =
jL(w1)j�kjL(w1) + jL(w2)j�kjL(w2)

jL(w)j :
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(b) Set �kjU(d) = �kr: Loop over w in DFS-PRE - fr; dg. Let s be the sibling of w

and p be the parent of s and w. Compute

�kjU(w) =
jU(p)j�kjU(p) + jL(s)j�kjL(s)

jU(w)j :

This achieves the computation of all �kjS average distances. All other steps of the algorithm

are described in Section 2.1.
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4 Details of FASTNNI algorithm

In this appendix, we �ll in the details for the OLS tree swapping algorithm. Recall that

the �rst step is to compute the average distances between non-intersecting subtrees. We use

the same notation as in the previous section.

1. Pre-calculating average distances:

(a) We �rst calculate all the average distances of the form �L(v)jL(w). Loop over v in

DFS-POST - fr; dg; loop over w in DFS-POST including all nodes not equal to

or below v in this order. For any w which is not an ancestor of v:

i. IF v; w 2 [n], then �L(v)jL(w) = �vw.

ii. ELSE IF v 62 [n], set

�L(v)jL(w) =
jL(v1)j�L(v1)jL(w) + jL(v2)j�L(v2)jL(w)

jL(v)j :

iii. ELSE

�L(v)jL(w) =
jL(w1)j�L(v)jL(w1) + jL(w2)j�L(v)jL(w2)

jL(w)j :

(b) To calculate all �L(v)jU(d) distances, loop v over DFS-POST - fr; dg. IF v 2 [n],

then �L(v)jU(d) = �vr, ELSE

�L(v)jU(d) =
jL(v1)j�L(v1)jU(d) + jL(v2)j�L(v2)jU(d)

jL(v)j :

(c) We now calculate all distances of the form �L(v)jU(w), where w is an ancestor of

v. Loop w over DFS-PRE - fr; dg. Let s be the sibling of w and p be the parent
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of s and w. Loop over v from L(w) via any manner. For each v, set

�L(v)jU(w) =
jL(s)j�L(v)jL(s) + jU(p)j�L(v)jU(p)

jU(w)j :

It is easily seen that every formula above uses already computed terms, and thus requires

O(1) time, due to the computing orchestration based on the DFS-POST and DFS-PRE or-

ders. Each pair of vertices v; w is the subject of exactly one �L(v)jL(w);�L(v)jU(w) or �L(w)jU(v)

calculation, thus the computational time is O(n2), and we can store all of these average dis-

tances unambigously in a matrix.

Now to Steps 2 and 3.

2. Create the heap of possible swaps. Loop e over the internal edges of T via any method.

(a) Using Equation (9) determine the change in total lengths s1(e); s2(e) for each of

the two possible tree swaps across e. Let s(e) = max(0; s1(e); s2(e)).

(b) Form a heap containing all the values of s(e) which are positive.

3. Achieve the best swap and update the data.

(a) Assuming the heap is non-empty, let e = (v; w) be the best edge on the heap. Let

A;B;C and D denote the four subtrees which meet at e, with roots a; b; c and d,

as in Figure 2(a), such that a and b are incident to v, while c and d are incident

to w. Suppose B $ C is the indicated swap. Remove edges (v; b) and (w; c) from

the topology and add edges (v; c) and (w; b).
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(b) Loop over the subtrees S of A[C via any manner. Compute �SjB[D by averaging

�SjB and �SjD using Equation (2). Achieve the same for B [D.

(c) Set s(e) = 0; and remove it from the heap. Let f range over the four edges

incident to e, recalculate s(f) by testing the two possible tree swaps across f ,

and, if s(f) > 0, insert s(f) into the heap.

(d) If the heap is non-empty, return to Step 3(a). Otherwise, use the matrix of average

distances and Equations (3) and (4) to assign branch lengths to all of the edges

of the �nal tree.
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5 Balanced Minimum Evolution Algorithms

The structure of the BME and BNNI algorithms are identical to their OLS counterparts,

except in the step updating the matrix of average distances. Also, the BME algorithm

requires that the full matrix of average distances be kept throughout tree building, as opposed

to the OLS version, which requires only the distant-2 subtree average distances.

Consider the insertion of the node k, in tree Tk�1. Let X and Y be a pair of disjoint

subtrees of Tk�1, such that k is inserted in Y . We then use Equation (11) to calculate

�Tk
XjY [fkg. The updating step of BME is as follows:

3. Let (s; u) be the edge where k is inserted, with S and U the subtrees having roots s

and u, respectively and Tk�1 = S [ U and S \ U = ;.

(a) Loop over the subtrees Z of S.

i. Let Y be the complement of Z in Tk�1.

ii. Loop over X � Z, and use Equation (11) to calculate �Tk
XjY [fkg.

(b) Repeat (a) with U in the place of S.

A similar adjustment is done for BNNI. Suppose we start with the topology T , as shown
in Figure 2(a), and swap subtrees B and C to form the topology T 0. Suppose x and y are

nodes in A[fvg, with y on the path from x to v, and l edges between y and v. Let X and Y

be the nonintersectiong subtrees with roots x and y respectively. We allow for the possibility

that l = 0, in which case we choose X � A. (See Figure 5.) Our updating equation is:

�T 0

XjY = �T
XjY � 2�(l+2)�T

XjB + 2�(l+2)�T
XjC (18)
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The modi�ed step in BNNI is:

3. Update the matrix of average distances

(a) Loop over pairs of nodes x; y where x is any node in the subtree A and y is any

node in the path from x to v. Let X and Y denote the non-intersecting subtrees

(see Figure 5) with roots x and y, respectively. Use Equation (18) to calculate

�T 0

XjY . Repeat the same steps for all analogous pairs x; y in each of B, C, and D.

(b) For any subtree X � A [ C, compute

�T 0

XjB[D =
1

2
(�T

XjB +�T
XjD):

Perform analogous computations to compute �T 0

Y jA[C for all subtrees Y � B [D.

(c) Calculate

�T 0

A[CjB[D =
1

4
(�T

AjB +�T
AjD +�T

CjB +�T
CjD)
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Table 1: Topological accuracy for 24-taxon trees at various rates of evolution

slow rate w/o NNIs + FASTNNI + BNNI
True Tree .109 -1.6% .104 -6.2 %
FITCH .109 -1.9% .113 2.0% .107 -3.4%

WEIGHBOR .109 -1.8% .112 1.7% .107 -3.0%
BIONJ .111 -0.3% .113 2.0% .107 -3.6%

NJ .111 0% .113 2.0% .107 -3.5%
BME .118 7.1% .113 1.9% .107 -2.8%
GME .122 10% .113 2.1% .107 -3.4%

HGT/FP .334 202% .112 1.1% .107 -2.9%
moderate rate w/o NNIs + FASTNNI + BNNI

True Tree .092 3.7% .083 -5.8%
FITCH .085 -4.9% .094 6.0% .085 -4.0%

WEIGHBOR .085 -4.3% .094 6.2% .085 -4.0%
BIONJ .087 -2.0% .094 6.5% .085 -4.2%

NJ .088 0% .094 6.6% .085 -4.0%
BME .100 13% .094 6.3% .084 -4.9%
GME .107 21% .095 7.1% .084 -4.8%

HGT/FP .326 268% .095 7.5% .088 -0.2%
fast rate w/o NNIs + FASTNNI + BNNI

True Tree .088 6.5% .076 -8.3%
FITCH .076 -7.8% .090 8.8% .077 -7.0%

WEIGHBOR .077 -6.8% .089 8.2% .077 -6.9%
BIONJ .079 -3.6% .090 9.0% .077 -6.6%

NJ .082 0% .090 9.1% .077 -6.9%
BME .098 19% .090 9.1% .076 -7.1%
GME .105 28% .090 9.8% .076 -7.6%

HGT/FP .329 300% .090 9.8% .083 0.8%

Note: The �rst number indicates the average topological distance between the inferred tree
and the true phylogeny. The second number (in parentheses) provides the relative di�erence
in topological distance between the method considered and NJ; the more negative this value,
the better the method was relative to NJ.
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Table 2: Topological accuracy for 96-taxon trees at various rates of evolution

slow rate w/o NNIs + FASTNNI + BNNI
True Tree .172 -5.6% .167 -8.8%

WEIGHBOR .178 -2.5% .181 -0.7% .173 -5.2%
BIONJ .180 -0.9% .182 -0.3% .173 -5.1%

NJ .183 0% .182 -0.2% .173 -5.2%
BME .186 1.9% .181 -0.6% .173 -5.3%
GME .199 8.8% .183 0.3% .173 -5.3%

HGT/FP .512 185% .185 1.5% .175 -4.3%
moderate rate w/o NNIs + FASTNNI + BNNI

True Tree .132 -3.0% .115 -15.4%
WEIGHBOR .129 -5.4% .137 0.5% .118 -13.0%

BIONJ .134 -1.9% .138 1.3% .118 -13.0%
NJ .136 0% .139 1.8% .119 -12.9%

BME .137 1.0% .138 1.1% .118 -13.2%
GME .158 16% .140 2.7% .118 -13.2%

HGT/FP .480 253% .143 5.2% .123 -.9.3%
fast rate w/o NNIs + FASTNNI + BNNI

True Tree .115 0.6% .088 -23.4%
WEIGHBOR .103 -10% .119 3.8% .091 -21.0%

BIONJ .112 -2.5% .121 5.1% .090 -21.7%
NJ .115 0% .121 5.5% .090 -21.3%

BME .117 1.8% .120 4.4% .090 -21.4%
GME .144 25% .122 6.3% .091 -21.1%

HGT/FP .465 306% .126 9.4% .098 -14.7%

Note: see note to Table 1.
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Table 3: Average computational time (HH:MM:SS) for reconstruction algorithms

Algorithm 24 taxa 96 taxa 1000 taxa 4000 taxa
GME .02522 .07088 8.366 3:11.01
GME + FASTNNI .02590 .08268 9.855 3:58.79
GME + BNNI .02625 .08416 11.339 6:02.10
HGT/FP .02518 .13491 13.808 3:33.14
BME .02534 .08475 19.231 12:14.99
BME + BNNI .02557 .08809 19.784 12:47.45
NJ .06304 .16278 21.250 20:55.89
BIONJ .06528 .16287 21.440 20:55.64
WEIGHBOR .42439 26.88176 ***** *****
FITCH 4.37446 ***** ***** *****

Table 4: Average number of NNIs performed

Algorithm 24 taxa 96 taxa 1000 taxa 4000 taxa
GME + FASTNNI 1.244 8.446 44.9 336.50
GME + BNNI 1.446 11.177 59.1 343.75
BME + BNNI 1.070 6.933 29.1 116.25
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Figure 1: Subtree B is composed of the two sibling trees B1 and B2
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Figure 2: Corner subtrees used to estimate the length of e, (a) for e an internal edge; (b) for
e an external edge
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Figure 3: T 0 is obtained from T by swapping A and k
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Figure 4: Calculating balanced average �T
XjY when k is inserted into Y
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Figure 5: Recalculating balanced average �T
XjY after B $ C tree swap

(a) (b)

B

B C

C

DD

XX

YY

e e
vv ww

x x

y y

50


